Singapore Academic Cybersecurity R&D

Harnessing R&D to Secure our Nation



AppMod: Safety and Privacy of Smart-City Mobile Applications through Model Inference

I. Goal

Increasing mobile platforms reliability by detecting anomalies and allowing users to effectively respond to them

II. Technologies


WP1: Generation of rich fine-grained logs and stateful model inference

We have developed a prototype that can modify an Android apk to generate rich logs of sensitive system calls. We have also developed a powerful model inference algorithm that performs deep learning for mining finite state automaton (FSA)-based specifications. A paper describing the latter work has been reviewed by NRF and approved for publication.

WP2: Differencing analysis and anomaly detection

We have developed a new approach to generate succinct summaries that characterize the differences between two logs or within a set of many logs. The differences are presented using a concise finite-state model that describes and highlights similarities and differences among the logs.

WP3: Crowd-centric, socially-aware user interaction model

We have built a preliminary version of a crowd-centric, demographic aware mobile app where users can get help from and provide help to others when malicious/questionable activities (e.g., an app is trying to send contact information sent over the internet) are occurring in their mobile phones. We have also conducted a survey to investigate what kind of help did people ask from and give to others when operating their mobile phones and configuring security and privacy settings.