Neural Architecture Search: An Empirical View

Mingjie Sun
What is Neural Architecture Search?

- **Start**
 - (ICLR 2017) Neural Architecture Search with Reinforcement Learning

- **Automatically design network architectures**
 - CNN
 - RNN cell (e.g. LSTM)

- **Transfer from hand-crafted design to automatically search**
Ingredients

- **Search Space**
 - Search Tree
 - Computational Graph
 - Memory Bank

- **Search Algorithm**
 - REINFORCE
 - Tree Search
 - Evolutionary algorithm

- **Search Algorithm and Search Space are coupled.**
Framework

1. Design a search space
2. Sample models from the search space
 a. random
 b. guided by search algorithm
3. Evaluate the sampled models
 a. train the model for some epochs/time
 i. on standard datasets (e.g. CIFAR10, CIFAR100)
 b. use the validation accuracy at the end as a signal
4. Search algorithm uses the evaluation results to guide further search
Search Tree

- Search space is represented by a rooted tree.
 - Tree Search Algorithms
- Each edge specifies an assignment.
 - depth
 - activation function
 - filter size
 - and so on ……
- Leaf node represents a specified neural network.
Computational Graph

- Use primitive computation to form complex computational graph
 - Evolutionary algorithms
Memory Bank

- Represent network architectures as memory read/write operations.

Figure: a memory bank representations for Resnet/DenseNet/FractalNet
Pitfall & Insight

- Decouple depth from the search space.
 - Going deeper, the training tends to get longer.
 - If not given enough time resource, it could add potential bias to the search process.
 - shallow model

- Encourage the algorithm to learn complex cell structure.
 - Advantages:
 - generalize to deep model easily (e.g. stacking)
 - transfer to other tasks (Imagenet)

- Different search space allows for different specialized algorithms.
Search Algorithm

- Tree search
 - Monte Carlo Tree Search
- Reinforcement Learning
 - Q-learning
 - REINFORCE
- Evolutionary Algorithm
- and so on
Acceleration

● Traditional Paradigm
 ○ Train each sampled model for a fixed epochs/time
 ○ Problem:
 ■ Waste time on bad models.

● Why important?

● Accelerating technique
 ○ Early Stopping
 ■ Idea : Make use of early information
 ○ One-shot evaluation
 ■ pre-trained parameters
Early Stopping

● **Origin**
 ○ used as a way to prevent overfitting in neural networks

● **Help accelerate search by pruning bad models**
 ○ Hyperband (Li, et.al)
 ○ Population based training (DeepMind)

● **Illustration**
An unified view of Early Stopping

- Pre-define the “training hierarchy”
- At each epoch in the hierarchy, use heuristics to decide whether to continue training.

\[\text{epoch } n_{i+1} \]
\[\text{epoch } n_i \]
\[\text{epoch } n_{i-1} \]
\[\ldots \]
\[\text{epoch } n_1 \]
Heuristic

● Performance Prediction
 ○ Use a pre-trained model to predict the final performance.
 ○ Continue if the predicted performance is good.

● Comparison Based
 ○ Procedure:
 ■ Evaluate a set of models in parallel.
 ■ Keep training models with good performance from the set.
 ○ Advantages:
 ■ An adaptive approach: No need to design complicated heuristic
Other techniques & Discussions

● Other techniques:
 ○ One-shot evaluation:
 ■ Use pretrained parameters

● Discussions:
 ○ Can we beat random search?
 ■ Pruning technique is the key to beat random search.
 ○ Challenges:
 ■ Design efficient search space representations
 ■ and so on
References

2. Brock, A. et.al (2017) SMASH: One-Shot Model Architecture Search through HyperNetworks
Q&A